But Jesus answered, “I tell you, if these (his followers) become silent, the stones will cry out!” Luke 19:40

We must speak for silence would shame us, and the rocks themselves would cry out... You, O Lord Christ Jesus, must be praised for who You are in the world You have made.

Hello! The latest science is full of new findings that show that God, in the person of Jesus, is Creator of the universe, you and us. Thank you for joining us in learning the Good News.

But Jesus answered, “I tell you, if these (his followers) become silent, the stones will cry out!” Luke 19:40

We must speak for silence would shame us, and the rocks themselves would cry out... You, O Lord Christ Jesus, must be praised for who You are in the world You have made.

Hello! The latest science is full of new findings that show that God, in the person of Jesus, is Creator of the universe, you and us. Thank you for joining us in learning the Good News.

The Process of Erosion

Erosion is a process that simply must happen. It is a constant though it happens at different rates depending on the situation. I will explain the process of erosion and show how it supports a young earth.

Erosion such as seen at the right is erosion of dirt, not rock. Erosion of dirt tells us nothing about the age of the places. In the image to the right (in Canyonlands National Park) you can see a very distinct half-circle in the center of the picture. That is a geological amphitheater. Amphitheaters are formed via a process called sapping. Sapping can occur in one of three ways. The result is the erosion of a

Amphitheaters

Amphitheaters are unique structures that are found in many places, but especially in the American Southwest. In the image to the right (in Canyonlands National Park) you can see a very distinct half-circle in the center of the picture. That is a geological amphitheater. Amphitheaters are formed via a process called sapping. Sapping can occur in one of three ways. The result is the erosion of a

Where’s the Evidence for Noah’s Flood?

I have read several authors and been in conversations where a statement is made along this line: There is no evidence of the earth being young or of Noah’s Flood. If these ideas are true, why does God hide all the evidence? The answer: The evidence is all around us. Those who do not “see” the evidence do not see it because they do not want to see it. They do not want there to be a God. This is not

Archaeorhynchus spathula

Naturalists always claim that fossil order (most primitive creatures at the bottom of the geological column through most advanced at the top of the column) proves evolution. There are, as you might guess, many exceptions. They discount those exceptions. Only finding a mammal down deep in the layers is acceptable to them. Not unexpectedly, none have been found. In the Ashley Phosphorous beds in South Carolina dinosaur and human fossils were found together, but that doesn’t count in their eyes. Now a modern bird has been found in rocks 120 million years old. So the oldest bird fossil is as old as dinosaurs and looks exactly like a modern bird. Birds supposedly evolved from dinosaurs, but here is a fossil that is of the same time as dinosaurs. Every feature of the bird looked just like modern birds. The fossil even had remains of lungs. Those lungs are modern bird lungs. They look nothing like dinosaur lungs. The evidence of Noah’s Flood is all through the rock record.

Christ or Issa - The Lost Years of Jesus - Part 2

Way back in 2005, we ran a series of articles on Issa and Gnosticism. That was 14 years ago. We started this reprint last issue. I have updated and expanded slightly from the original articles. Mostly, I deal with the philosophy of Materialism. Gnosotism is becoming ever more deeply entrenched in our society, so it needs to be explained also:

Last issue, we looked at the evidence that Jesus went to India between the ages of 13 and 30 to learn from the Hindu masters. We discovered that the evidence was very sketchy, but leaves some pos-
Erosion from page 1

Erosion of rock starts with a process called work hardening. Have you ever bent a paper clip back and forth until it breaks? If you do it slowly it takes more bends to break it. If you do it quickly, the paper clip gets hot. Most people think the paper clip breaks because it gets weaker with bending. In fact, it gets stronger and therefore more brittle. It finally gets so hard and strong that it breaks because it can no longer bend.

Erosion starts the same way... Work hardening. As the sun shines on rock, the rock heats up and expands. When the sun and temperature go down, the rock cools and shrinks. This has the same effect as bending. The rock gets harder and harder until it can no longer expand or contract. Instead it breaks and now there is a crack unless it happens in a situation like below. The first thing this photo should do is cause you to ask the question: Do I see very many places where a rock wall has a big chunk missing? As you look around you will find that this is actually quite unusual. Most canyon walls, wherever you look, are pretty flat-sided. After millions of years of work hardening every rock wall should be extremely UN-smooth. But you will find most rock walls are quite smooth.

So, where does the most expansion and shrinking occur? Notice in the diagram at the right that it is the tops and sides that are struck by the sun. The most change will occur at the corner of the top and side facing the sun. Notice that I have shown that corner as rounded. North top corners will experience more change than the north face. The photo on the left shows how the top edge at the Grand Canyon is nicely rounded. Start looking for this feature as you roam the west.

The photo below shows what happens at the top of a spire. Notice that because the top of the spire is not very big across the top, the interior of the spire goes through large expansion and contraction movements. The top has fractured into horizontal layers. The edges of the layers are falling off, but in the middle the rock is well supported so you just have layers of broken rock. This illustrates how work hardening affects rocks. The sides of the spire are breaking away as water enters cracks made by work hardening and ice expands the crack.

Now let’s see what this tells us. First, we should see a lot more areas where rock has fallen off the side of rock face walls. The cliffs we see have been around for supposedly millions of years, yet we see very little collapse of rock walls.

It used to be that geologists would say something like, A crack somehow occurs, water gets in the crack, and freezes, expanding the crack resulting in rock fall. They hadn’t figured work hardening into the equation. In their mind it could take millions of years for the crack to occur. But work hardening happens every day. It might take thousands of years for a crack to occur, but it can’t take much longer because work hardening is constant.

Look at the picture of the Grand Canyon at the top of the next page. There is virtually no rock debris in the amphitheater. And, very importantly, there is no stream of water to erode rock into smaller pieces and then carry the pieces away. Perhaps a huge downpour hits a couple of times a decade, but only water that falls from the storm into the amphitheater is available to haul away rocks. So, where are all the rocks that should have fallen into the amphitheater? As you hike the trails in Sedona, notice the lack of rock talus (debris) at the base of the vertical walls of rock. There is extremely little.

Geologists have measured the amount of sediment entering the oceans from rivers. In 10 million years, the continents will be flat at sea level based on the rate. There are some factors to consider so let’s help out and say it will take 60 million years. The Grand Canyon was finished being carved about 6 million years ago. That is 1/10th the time to erode it flat and another 1500 feet lower to sea level. But when we see the vertical rock cliffs and the lack of debris at the base of the cliffs, the evidence shows that the Grand Canyon had to be finished being carved a few thousand years ago at most.

Jesus, is the creator of the human ability to think, reason and make sense of the world around us, not to mention the universe, you and me. CRM
Amphitheater from page 1
canyon with rather vertical walls.

1 The first way sapping can occur is
undercutting. This is often called
groundwater sapping. In this scenario,
groundwater comes out of a rock face.

As the water flows out of the
rock, it undercut the rock
face and the material
above caves in.

This process operates continuously and
eventually a narrow canyon is formed.

2 Sometimes water gets backed up
by a natural dam resulting in a rock
face being under water for some period
of time. This has happened at the Grand
Canyon a couple of times when a vol-
cano erupted near the western end of
the Canyon. The water backs up behind
the dam formed by lava pouring into the
canyon from the rim. The water eventu-
ally over-spills the natural dam. The dam
is eroded away in a matter of a few days.
The rapid draining will cause the water-
weakened rock to fall in, many times
resulting in a canyon that suddenly is a
little wider and may even have slightly
steeper walls.

3 The result of the third way of sap-
ing is an amazing geological fea-
ture called an amphitheater. In photo “A”
above of the Grand Canyon I have placed
arrows pointing to amphitheaters in the
Redwall Limestone and, at the lower
right, the Tapeats Sandstone. Amphithe-
aters are best known for being in sand-
stone, but the Grand Canyon has scores of
large amphitheaters in the Redwall
Limestone.

An important thing to notice is that the
amphitheaters do not have a stream
or river coming to the top of them from
beyond them. They could not have been
eroded out by a large flow of water from
behind. They also do not show any evi-
dence of a spring undercutting the rock
to make the amphitheater. This third way
of sapping requires that there be no solidified
rock. They form in sediments that are still
fully liquefied.

Here is how these beautiful, nearly
semi-circle-shaped, amphitheaters
formed. First the material that has been
removed had to be unhardened, still lique-
ified, sediment. It can be a little
firmed up, but still very watery.

Water catastrophically cuts a canyon
through the wet sediment, the Drain in
Figure 2 below. Gravity drains the water
and sediment on the left of Figure 2 into
the moving water flowing in the drain.

Extensive research in this matter was con-
ducted by Alan D. Howard in the 1980s.

We have a link to his most extensive
experiments on our web home page. The
paper is full of pictures and illustrations.

This means that the Grand Canyon
strata had to be deposited and then
eroded within a very short time period,
a few months at most, or the sediments
would have hardened and no sapping
would have occurred.

SEDONA has its own sapping structures.
See the two Google Earth images
(Figures B & C) above for the location of
three sapping-created amphitheaters in
SEDONA. The evidence for Noah’s Flood is
found throughout the Sedona area.

God in the person Jesus is the creator
of the universe, you, me and laws
of physics resulting in sapping-formed
amphitheaters. CRM
very quick review of the Old Testament, describing the life of Issa. All three are a
relations of the Buddhist scroll or scrolls—like to pass along false information, the
But, read what he has to say about the geological record (all are quotes): Ager sees
Ager is no friend of young earth creationists as quote #1 illustrates. But, read what he has to say about the geological record (all are quotes); Ager sees small catastrophes of an hour substituting for a thousand years. The Coconino Formation was assumed to take millions of years to form. The actual evidence indicates it took a day. So, how long do YOU conclude it took to lay down all the sediments? We all use assumptions to interpret the facts in drawing our conclusion. Evaluate the data based on known processes. As this issue illustrates, Noah’s Flood is the only scientific interpretation!